

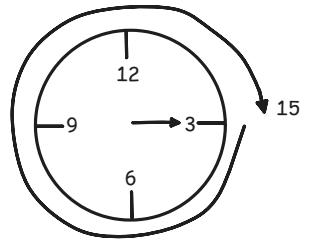
3 - Modular arithmetic

Clock points the same way at these hours:

$$-9 \equiv 3 \equiv 15 \equiv 27 \pmod{12}$$

Definition. For integers n, a, b with $n \neq 0$, we write

$$a \equiv b \pmod{n},$$



read "a is congruent to b mod n", if n divides a-b or equivalently, $a \div n$ and $b \div n$ give the same remainder.

Example 1. $17 \equiv 5 \pmod{3}$ because $17-5 = 12 = 3 \times 4$ is a multiple of 3.

$15 \not\equiv 2 \pmod{3}$ because 3 does not divide $15-2 = 13$.

$$32 \equiv 21 \equiv 10 \equiv -1 \equiv -12 \equiv -23 \pmod{11}$$

Example 2. All even numbers are $\equiv 0 \pmod{2}$

All odd numbers are $\equiv 1 \pmod{2}$

Example 3. My birthday is Tuesday in 2026 and ??? in 2027.

Answer. Say Sunday = 0, Monday = 1, ..., Saturday = 6. Then:

$$\text{Tuesday} + 365 = 2 + 365 = 367 = 350 + \underbrace{14}_{\text{divisible by 7}} + 3 \equiv 3 \pmod{7} = \text{Wednesday.}$$

(in 2026) (in 2027)

Theorem. $\left\{ \begin{array}{l} x \equiv a \pmod{n} \\ y \equiv b \pmod{n} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x+y \equiv a+b \pmod{n} \\ xy \equiv ab \pmod{n} \end{array} \right.$

Why? Know a and b are the remainders of some division of $x \div n$ and $y \div n$:

$$x = j \cdot n + a$$

$$y = k \cdot n + b$$

Add these two equations. We get:

$$x+y = (j+k) \cdot n + \underbrace{(a+b)}_{\substack{\text{quotient of } (x+y) \div n \\ \text{remainder of } (x+y) \div n}}$$

So $x+y \equiv a+b \pmod{n}$. Similar computation shows $xy \equiv ab \pmod{n}$.

Example 4. Find the remainder of $N \div M$ if:

$$(a) M = 11, N = 10^2 + 111 \times 12 \equiv (-1)^2 + 1 \times 1 = 2 \pmod{11}$$

$$(b) M = 3, N = 1234$$

$$(c) M = 11, N = 1234$$

Answer (b): $1234 = 1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10 + 4$
 $\equiv 1 \cdot (1)^3 + 2 \cdot (1)^2 + 3 \cdot (1) + 4 \pmod{3}$
 $\equiv 1 + 2 + 3 + 4 \equiv 10 \equiv 1 \pmod{3}$.

Answer (c): $1234 = 1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10 + 4$
 $\equiv 1 \cdot (-1)^3 + 2 \cdot (-1)^2 + 3 \cdot (-1) + 4 \pmod{11}$
 $\equiv 1 - 2 - 3 + 4 \equiv 2 \pmod{11}$.